Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 $N, N, N^{\prime}, N^{\prime}$-Tetramethyl- $N^{\prime \prime}$-[2($N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidino)ethyl]guanidine

Ioannis Tiritiris ${ }^{\text {a }}$ and Willi Kantlehner ${ }^{\text {b* }}$
${ }^{\text {a }}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ${ }^{\mathbf{b}}$ Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
Correspondence e-mail: willi.kantlehner@htw-aalen.de

Received 11 June 2012; accepted 14 June 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.096 ;$ data-to-parameter ratio $=21.1$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{6}$, is located about an inversion center situated at the center of the $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ bond. The $\mathrm{C}-\mathrm{N}$ bond lengths are 1.285 (2), 1.384 (2) and 1.395 (1) \AA, indicating double- and single-bond character. The $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles are 114.1 (1), 119.3 (1) and $126.5(1)^{\circ}$, showing a deviation of both CN_{3} planes from an ideal trigonal-planar geometry.

Related literature

For the crystal structure of $N, N, N^{\prime}, N^{\prime}$-tetramethylchloro-formamidinium-chloride, see: Tiritiris \& Kantlehner (2008). For the synthesis of $N, N, N^{\prime}, N^{\prime}$-tetramethyl- $N^{\prime \prime}$-[2($N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidino)-ethyl]-guanidine and the crystal structure of the corresponding diprotonated bisguanidinium dichloride salt, see: Wittmann et al. (2000). For the synthesis and characterization of bisguanidine-copper complexes, see: Bienemann et al. (2010).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{6}$
$M_{r}=256.40$
Monoclinic, $P 2_{b} / n$
$a=8.4189$ (6) A
$b=8.5894$ (6) A
$c=11.0089$ (8) \AA
$\beta=106.858$ (5) ${ }^{\circ}$
Data collection
Bruker-Nonius KappaCCD diffractometer
7247 measured reflections
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=0.86$
1835 reflections

1835 independent reflections 1120 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$
$V=761.88(10) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.22 \times 0.18 \times 0.15 \mathrm{~mm}$

87 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.11 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2426).

References

Bienemann, O., Haase, R., Flörke, U., Döring, A., Kuckling, D. \& HerresPawlis, S. (2010). Z. Naturforsch. Teil B, 65, 798-806.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tiritiris, I. \& Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.
Wittmann, H., Schorm, A. \& Sundermeyer, J. (2000). Z. Anorg. Allg. Chem. 626, 1583-1590.

supplementary materials

Acta Cryst. (2012). E68, o2161 [doi:10.1107/S1600536812027079]

$N, N, N^{\prime}, N^{\prime}$-Tetramethyl- $N^{\prime \prime}-\left[2-\left(N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}\right.\right.$-tetramethylguanidino)ethyl]guanidine

Ioannis Tiritiris and Willi Kantlehner

Comment

The synthesis of $N, N, N^{\prime}, N^{\prime}$-tetramethyl- $N^{\prime \prime}$ - [2-($N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidino)-ethyl]- guanidine is well known in literature (Wittmann et al., 2000). The compound was used as a nitrogen donor ligand in reactions with copper halogenides (CuI or CuCl_{2}), to give mono- or bis-chelate complexes (Bienemann et al., 2010). However, the crystal structure of the free guanidine base was previously unknown. According to the structure analysis, the $\mathrm{C} 1-\mathrm{N} 3$ bond in the bisguanidine is 1.285 (2) \AA, indicating double bond character. The bond lengths $\mathrm{C} 1-\mathrm{N} 2=1.384(2) \AA$ and $\mathrm{C} 1-\mathrm{N} 1=$ 1.395 (1) \AA Are elongated and characteristic for a $\mathrm{C}-\mathrm{N}$ imine single bond. The $\mathrm{N}-\mathrm{C} 1-\mathrm{N}$ angles are $114.1(1)^{\circ}(\mathrm{N} 1-\mathrm{C} 1-$ $\mathrm{N} 2), 126.5(1)^{\circ}(\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3)$ and $119.3(1)^{\circ}(\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3)$, showing a deviation of both CN_{3} planes from an ideal trigonal planar geometry (Fig. 1). The dihedral angle N3-C6-C6-N3 is 180.00 (9). The bonds between the N atoms and the terminal C-methyl groups, all have values close to a typical single bond (1.442 (2)-1.459 (1) \AA). This is completely different compared with the geometrical parameters from the crystal structure analysis of the corresponding diprotonated bisguanidinium dichloride salt (Wittmann et al., 2000). Here, the $\mathrm{C}-\mathrm{N}$ bond lengths of the CN_{3} units are in a range between 1.336 (2) and 1.342 (2) \AA, the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles are 119.5 (1), 120.1 (1) and 120.4 (1) $)^{\circ}$, indicating also delocalization of the positive charges on both CN_{3} planes. The crystal packing in the here presented title compound is through van der Waals interactions, only.

Experimental

Two equivalents of $N, N, N^{\prime}, N^{\prime}$-tetramethylchloroformamidinium-chloride (Tiritiris \& Kantlehner, 2008) were reacted with one equivalent of ethane-1,2-diamine in acetonitrile in the presence of triethylamine at 273 K . The obtained protonated bisguanidinium dichloride salt was reacted in a next step with an aqueous sodium hydroxide solution at 273 K . After extraction of the bisguanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution.

Refinement

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the $\mathrm{C}-\mathrm{N}$ bond to best fit the experimental electron density, with $U(\mathrm{H})$ set to $1.5 U_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA$. The remaining H atoms were placed in calculated positions with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.97 \AA$. They were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Computing details

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

The structure of the title compound with atom labels and 50% probability displacement ellipsoids.

$N, N, N^{\prime}, N^{\prime}$-Tetramethyl- $N^{\prime \prime}$-[2- ($N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethylguanidino) ethyl]guanidine

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{6}$

$M_{r}=256.40$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.4189$ (6) \AA
$b=8.5894$ (6) \AA
$c=11.0089$ (8) \AA
$\beta=106.858(5)^{\circ}$
$V=761.88(10) \AA^{3}$
$Z=2$

Data collection

Bruker-Nonius KappaCCD diffractometer
Radiation source: sealed tube Graphite monochromator φ scans, and ω scans
7247 measured reflections
1835 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$F(000)=284$
$D_{\mathrm{x}}=1.118 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7247 reflections
$\theta=2.7-28.1^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Polyhedral, colourless
$0.22 \times 0.18 \times 0.15 \mathrm{~mm}$

1120 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.1^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-14 \rightarrow 14$
$w R\left(F^{2}\right)=0.096$
$S=0.86$
1835 reflections

87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.059 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.57 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$-0.04772(12)$	$0.18588(12)$	$0.32603(9)$	$0.0485(3)$
N2	$0.20678(12)$	$0.08543(13)$	$0.31899(10)$	$0.0556(3)$
N3	$-0.01179(12)$	$0.13388(11)$	$0.12955(9)$	$0.0484(3)$
C1	$0.05014(13)$	$0.13573(13)$	$0.25085(10)$	$0.0434(3)$
C2	$-0.22265(16)$	$0.20743(17)$	$0.26375(13)$	$0.0607(4)$
H2A	-0.2392	0.3035	0.2173	0.091^{*}
H2B	-0.2819	0.2105	0.3262	0.091^{*}
H2C	-0.2631	0.1226	0.2064	0.091^{*}
C3	$0.01949(17)$	$0.29870(15)$	$0.42638(12)$	$0.0571(3)$
H3A	0.1384	0.2914	0.4535	0.086^{*}
H3B	-0.0228	0.2775	0.4968	0.086^{*}
H3C	-0.0128	0.4017	0.3950	0.086^{*}
C4	$0.24173(19)$	$0.01111(18)$	$0.44203(13)$	$0.0688(4)$
H4A	0.2972	0.0835	0.5069	0.103^{*}
H4B	0.3116	-0.0778	0.4444	0.103^{*}
H4C	0.1396	-0.0216	0.4563	0.103^{*}
C5	$0.35164(16)$	$0.12927(18)$	$0.28218(14)$	$0.0664(4)$
H5A	0.3186	0.1914	0.2065	0.100^{*}
H5B	0.4073	0.0373	0.2663	0.100^{*}
H5C	0.4254	0.1883	0.3492	0.100^{*}
C6	$0.06621(15)$	$0.04024(13)$	$0.05215(10)$	$0.0488(3)$
H6A	0.1385	-0.0369	0.1049	0.059^{*}
H6B	0.1331	0.1064	0.0150	0.059^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0438(5)$	$0.0632(6)$	$0.0376(5)$	$-0.0024(4)$	$0.0103(4)$	$-0.0085(4)$
N2	$0.0442(5)$	$0.0785(7)$	$0.0409(6)$	$0.0042(5)$	$0.0074(4)$	$0.0036(5)$

supplementary materials

N3	$0.0528(6)$	$0.0556(6)$	$0.0351(5)$	$0.0067(4)$	$0.0099(4)$	$-0.0028(4)$
C1	$0.0434(6)$	$0.0495(6)$	$0.0357(6)$	$-0.0011(4)$	$0.0090(5)$	$-0.0028(4)$
C2	$0.0463(7)$	$0.0865(9)$	$0.0482(7)$	$0.0030(6)$	$0.0121(6)$	$-0.0075(6)$
C3	$0.0635(8)$	$0.0643(8)$	$0.0439(7)$	$-0.0071(6)$	$0.0162(6)$	$-0.0122(5)$
C4	$0.0686(9)$	$0.0823(9)$	$0.0476(8)$	$0.0144(7)$	$0.0043(7)$	$0.0078(7)$
C5	$0.0458(7)$	$0.0868(10)$	$0.0662(9)$	$-0.0047(6)$	$0.0155(7)$	$-0.0165(7)$
C6	$0.0518(7)$	$0.0576(7)$	$0.0361(6)$	$0.0056(5)$	$0.0115(5)$	$-0.0016(5)$

Geometric parameters ($A,{ }^{\circ}$)

N1-C1	1.3945 (14)	C3-H3B	0.9600
N1-C2	1.4449 (16)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
N1-C3	1.4550 (15)	C4-H4A	0.9600
N2-C1	1.3837 (15)	C4-H4B	0.9600
N2-C5	1.4422 (16)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
N2-C4	1.4483 (17)	C5-H5A	0.9600
N3-C1	1.2852 (15)	C5-H5B	0.9600
N3-C6	1.4589 (13)	C5-H5C	0.9600
C2-H2A	0.9600	C6- $\mathrm{C}^{\text {i }}$	1.516 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600	C6-H6A	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600	C6-H6B	0.9700
C3-H3A	0.9600		
C1-N1-C2	117.02 (10)	H3A-C3-H3C	109.5
C1-N1-C3	119.32 (9)	H3B-C3-H3C	109.5
C2-N1-C3	113.16 (10)	N2-C4-H4A	109.5
C1-N2-C5	121.12 (11)	N2-C4-H4B	109.5
C1-N2-C4	123.22 (10)	H4A-C4-H4B	109.5
C5-N2-C4	114.76 (11)	N2-C4-H4C	109.5
C1-N3-C6	119.87 (10)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
N3-C1-N2	126.52 (10)	H4B-C4-H4C	109.5
N3-C1-N1	119.28 (11)	N2-C5-H5A	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	114.14 (10)	N2-C5-H5B	109.5
N1-C2-H2A	109.5	H5A-C5-H5B	109.5
N1-C2-H2B	109.5	N2-C5-H5C	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H5A-C5-H5C	109.5
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	H5B-C5-H5C	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	N3-C6-C6 ${ }^{\text {i }}$	109.70 (12)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	N3-C6-H6A	109.7
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C6-C6-H6A	109.7
N1-C3-H3B	109.5	N3-C6-H6B	109.7
H3A-C3-H3B	109.5	C6- $\mathrm{C}^{\text {i }}$ - H 6 B	109.7
N1-C3-H3C	109.5	H6A-C6-H6B	108.2
C6-N3-C1-N2	15.52 (18)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	10.45 (16)
C6-N3-C1-N1	-161.37 (10)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	-132.01 (12)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	46.34 (18)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-166.81 (11)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	-145.11 (14)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	50.74 (15)

supplementary materials

$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1 \quad \mathrm{C} 136.65(12) \quad 138.63$ (13)

C4—N2-C1—N1 31.90 (17)

Symmetry code: (i) $-x,-y,-z$.

